U3A Geology

The Chanelled Scablands, Washington State, USA

Introduction

- Channeled Scablands → 4000km² region of uniquely sculptured terrain in the Columbia River Plateau region of east Washington State
- the area is underlain by thick flows of Columbia River Basalt
- region characterised by anastomosing channels, flat-topped basalt hills and very few trees

 the landscape is the result of massive flood erosion in the late part of the last ice age

Landsat image, Washington State

Landsat image of the Scablands

Prelude to talk

- The story of the interpretation of the geology of the Scablands and decades of controversy that followed \rightarrow great story
- there are many examples through history of scientists pilloried because their philosophies did not conform with accepted beliefs of the time
- this talk looks at another of these scientists considered a maverick because his interpretations were considered geological heresy

Catastrophism v uniformitarianism

- In the late 18th century, people were thinking seriously about the age of the Earth. Two philosophies prevailed regarding the formation of crustal rocks
- the first (catastrophism) proposed that rocks composing the Earth's crust, formed by a number of short term, global, catastrophic events such as the Noachian flood → young Earth
- the second (originated by James Hutton) called uniformitarianism proposed that geological processes operate very slowly and the Earth was much older than was thought at that time
- these two opposing views were debated over much of the first half of the 19th century

J Harlen Bretz (1882-1981)

- Worked as school teacher in Seattle and Michigan (1908-11)
- graduated with BSc in Biology (Albion College, Michigan)
- completed PhD in Glacial Geology (University of Chicago)
- Geology lecturer (University of Washington, University of Chicago)
- in 1922 began field studies in Columbia River plateau region
- the next 7 years he conducted field studies on the intensely eroded landscape that he named the Channelled Scablands

Generalised stratigraphy of Cenozoic rocks in the Pasco Basin (after Lindsay and Gaylord 1990)

Scablands stratigraphy

- Scabland region underlain by thick sequence of basalt lava flows up to 2km thick (6 - 14.5myr old)
- unconformably overlying the basalts are fluvial silts and sands
- during arid glacial periods sand and silt loess formed a large area of rolling, grass covered hills → Palouse Hills
- flood erosion stripped off most of the loess, dissected the underlying basalt forming steep-sided coulees
- the Hansford formation comprises coarse gravels and sands deposited by glacial floods

Columbia River basalt (Trinidad)

Stratigraphy - Palouse loess

Basalt erosion

- Remarkable feature of the scablands \rightarrow deep erosion of basalt
- due to structure of basalt and immense energy of floodwaters
- lava flows show internal zonation
- colonnade \rightarrow columnar basalt at base of flow \rightarrow slow cooling
- entablature → overlying colonnade → faster cooling → greater density of fractures than the colonnade
- increased number of vertical and horizontal fractures \rightarrow cooling contraction

Basalt zonation (Bjornstad 2008)

Columnar basalt, Grand Coulee

Basalt erosion (after Bjornstad 2008)

X **Basalt** entablature colonnade

Kolk

Palouse Loess

Ringold Formation

Scabland erosion features

The Scablands contains a variety of features consistent with having been formed by floodwater erosion and deposition

Erosional features

- channels and coulees
- potholes and plunge pools
- mesas and buttes
- pinnacles and pillars
- cataracts and cascades
- streamlined sedimentary hills

Coulees

- Orthogonal shaped valleys with flat floors and vertical walls
- the Scablands is characterised by a network of anastamosing channels and coulees that are orthoganal in cross-section
- most modern day coulees contain either no streams or (rarely) underfit streams

Channels and coulees - Drumheller channels

Landforms - orthogonal channels (Palouse Canyon)

Landforms - hanging coulee Drumheller channels

Hanging coulee \rightarrow abandoned spillway over low divide

Landforms - mesas and buttes

- Mesas and buttes are flat-topped hills
- form where flood-waters have eroded weak layers and undercut more resistant layers causing them to collapse leaving behind vertical walls
- difference between mesas and buttes → mesas much wider than tall → buttes are narrower
- tops of mesas and buttes are flat → overlying sediment stripped off exposing more resistant basalt entablature

Landforms -Buttes and mesas

Mesa, Drumheller channels

Butte, Crab Creek coulee

Landforms - pillars (the Twin Sisters)

Cataract - Dry Falls

- In places where floods race across bedrock, floods create a series of cascades or cataracts often in descending step fashion
- cataracts formed through rapid erosion with up to 15km recession

Cascades - Staircase rapids

Landforms - cataracts and plunge pools

Plunge pools \rightarrow deep round basins formed where swirling flood -waters dropped 50m or more over cataract cliffs

Palouse falls

Landforms - pothole (Drumheller Channels)

Fast moving flood-waters produced kolks that bored and scoured deep potholes in the basalt

Pothole, Potholes coulee

Landforms - streamlined Palouse hills

- Streamlined hills formed where flood-waters eroded sediments eroded sediments overlying basalt
- hills have teardrop shape → oriented parallel to flow direction

Scabland depositional features

Distinctive depositional features are observed throughout the scablands

- giant flood bars
- giant current ripples
- slackwater rhythmites
- ice erratics and bergmounds

Giant flood bars (after Bjornstad 2008)

Bars are elevated area of sediment (sand and gravel) deposited by rivers or floodwaters

Crescent Creek bar

Depositional features - bar gravels (Beverly bar)

Exotic pebble (gneiss) in Beverly bar gravels

Giant current ripples

- Occur on the surface of many flood bars
- up to 15m high, wavelength up to 200m
- not recognised until identified on aerial photographs

Giant current ripples, Camas Prairie, Montana

Giant ripples along banks of the Snake River

Depositional features – slackwater rhythmites (Hanford Formation)

Slackwater rhythmites → interbedded, graded silt and sand laid down in back-flooded valleys where energy of flood-waters is greatly diminished

Laminated rhythmites containing fine to moderate rippling

Ice rafted erratic (Frenchman Hills)

Bergmounds

Bergmounds \rightarrow groups of boulders deposited by grounded icebergs

Bretz's geological interpretations

First paper (early 1923)

- Described Scabland features
- concluded that the landscape was sculptured by glacial flood waters
- no comment on magnitude of floods nor time frame

Second paper (late 1923)

- Proposed that erosion was due to a gigantic, cataclysmic glacial flood (>300m deep)
- flood waters followed courses of pre-existing streams
- volume of water exceeded capacity of valleys
- erosion occurred over a very short period of time (weeks)

Bretz's conclusions and evidence

- Bretz recognised that:
- An enormous amount of rapidly moving water was necessary
- all channels, coulees and divide crossings had to be contemporaneously active
 - Evidence for cataclysmic flooding:
 - (1) Occurrence of high level divide crossings
 - (2) Deposition of high level gravel bars
 - (3) Dry cataracts in the middle of coulees
 - (4) Giant potholes and plunge pools
 - (5) Gigantic boulders deposited along major channels

Palouse Canyon

- Palouse Canyon is a coulee formed by the floodwaters
- prior to the Scabland floods, there was a ridge between the Palouse and Snake rivers with both flowing into the Columbia River
- floodwaters flowing rapidly southward, crossed the ridge and formed a waterfall at the Snake River
- floodwaters eroded backwards forming a coulee called the Palouse Canyon resulting in the capture of the Palouse River by the Snake River

Palouse canyon

Palouse River Capture

- Bretz concluded that new channels were carved out where divides were crossed e.g. Palouse Canyon
- Palouse River diverted by stream capture (stream piracy)
- current Palouse River now flows down coulee (Palouse Canyon) eroded by floodwaters
- present day it flows into Snake River, prior to flood → flowed into Columbia River
- tectonic fractures in basalt aided floodwaters in carving out the Palouse Canyon

Palouse river capture

Pre-flood course of Palouse River

Post-flood course of Palouse River

Reversal in flow of Snake River

- The Snake River reversed its flow for a period of time due to floodwaters flowing down Palouse Canyon
- fast moving floodwaters rushed more >20km upstream and formed a delta bar 8km long and 30m thick

Reversal in flow of Snake River

Glacial sediments found along banks of the Snake River >20km upstream from the Palouse River junction

Bar in Snake River downstream from Palouse River junction Bar in Snake River upstream from Palouse River junction

Wallula Gap

- Constricted flow of floodwaters into the Columbia River
- Scabland erosion on top of cliffs 300m above the Columbia River

Lake Lewis

- Lake Lewis was a large transient lake (lasting only days to weeks) formed by the glacial floods
- the floods filled the Pasco and Quincy Basins for a short period due to the Wallula Gap constricting the outflow from the basin

Waterflow into and out of Lake Lewis

Horse Heaven Hills (shoreline of Lake Lewis)

Criticism of Bretz

- 1927 presentation of his theory received with widespread derision
- interpretations dismissed as preposterous, incompetent
- implied catastrophism when gradualism was the accepted tenet
- a problem was Bretz could not provide origin of flood waters
 - (1) Volcanic eruption under ice sheet (?)
 - (2) Rapid warming due to climate change (?)
 - No evidence for either phenomena
- Joseph Pardee contributions (1925, 1940)
- final recognition by some of his greatest protagonists (Gilluly, Flint) and universal recognition (Penrose medal)

Cordilleran ice sheet damming Lake Missoula

Lake Missoula formed through damming of Clark Fork River

- 10,000 Km² in area
- Up to 600metres deep
- Volume = 2000Km³
- Flow rate = 17,000,000m³/sec at 130km/hr

Channeled Scablands

Lake Missoula strandlines

Pathway of flood waters from Lake Missoula (Alt 2001)

Satellite false colour image of the Scablands

