Term 1 presentations

- Week 1 Minerals in hand specimen and under the microscope
 - 3 Mineral identification (practical)
 - 5 Rocks in hand specimen and under the microscope
 - 7 Igneous rocks
 - 9 Tsunamis

Term 2 presentations

- Week 1 Contributions to geology 1
 - 3 Contributions to geology 2
 - 5 Contributions to geology 3
 - 7 Contributions to geology 4
 - 9 Contributions to geology 5

Geode

Stalactitic

Botryoidal

Habit

Fibrous

Mammillary

Introduction

- Most minerals can be identified in hand specimen by determining
 a number of their physical properties and referring the properties
 to systematic identification tables → home in on identification
- you will be divided into 6 groups to perform the task
- each group will be provided with different a mineral set and other implements to aid with hardness estimation (copper coin, razor blade, quartz fragment) and streak (streak plate)
- there will also be a set of systematic identification tables
- all members of the group should participate in the exercise

Physical properties of minerals

- (a) Crystal form
- (b) Lustre
- (c) Hardness
- (d) Colour
- (e) Streak
- (f) Cleavage
- (g) Habit
- (h) Specific gravity
- Others eg. magnetic attraction, reaction with acid, striations, lamellae, etc.

Crystal Form

Some minerals can be identified on the basis of their crystal shape (or crystal form)

calcite - rhombohedral

pyrite - cubic

Lustre

Lustre describes the way that light is reflected by the surface of a mineral.

Metallic lustre - metallic lustre corresponds to the highly reflective yet opaque appearance of a metal.

Non-metallic lustre - minerals with non-metallic lustres are less intensely coloured and will permit light to pass through thin edges Lustre of non-metallic minerals can be further subdivided:

Dull	-	does not reflect light
Vitreous	-	glass-like
Resinous	-	lustre of resin
Pearly	-	pearl-like
Greasy	-	as if covered in oil
Silky	-	silk-like
Admantine	-	like that of diamond (high RI

Hardness

Hardness is a measure of the resistance of a mineral to being scratched. The hardness is measured with respect to the Moh's hardness scale.

Moh's Hardness Scale

- Talc
 Gypsum ______ fingerr
- Calcite - - - fingernail Calcite - - - - - 1° and 2° coins
- 4 Fluorite ---- 20° coin
- 5 Apatite _____pocket knife or razorblade
- 6 Orthoclase
- 7 Quartz _ _ _ _ common mineral
- 8 Topaz
- 9 Corundum
- 10 Diamond

Colour

- Colour is most obvious of physical properties → usually a poor guide to mineral identification (except for metallic minerals)
- trace amounts of impurities or, subtle variations in composition may have a profound effect on colour
- e.g. beryl normally pale cream to yellow in colour, trace amounts of Cr → brilliant green (emerald); trace amounts of Fe → blue (aquamarine); trace amounts of Mn → red
- many rock-forming minerals e.g. quartz, fluorite, calcite can occur in a range of colours
- minerals with metallic lustre have consistent, diagnostic colour

Colour

Eg. beryl $Be_3Al_2Si_6O_{18}$

variety: red beryl

variety: emerald

Streak

Streak refers to the colour of powdered mineral on a ceramic plate

Describe colour shade carefully e.g.

- sphalerite brown
- goethite yellow-brown
- hematite red brown

Streak

Cleavage

- Cleavage refers to the propensity of many minerals to break along distinct planar directions \rightarrow planes of weakness in crystal lattice
- cleavage is quantified by the number of directions along which the mineral breaks and the angles between them
- quality of cleavage can be described using terms such as perfect, good, fair etc.

Cleavage

A. Cleavage in one direction Example: muscovite Fracture not cleavage

> B. Cleavage in two directions at 90° Example: feldspar

C. Cleavage in two directions ≠ 90° Example: hornblende

D. Cleavage in three directions at 90° Example: halite

E. Cleavage in three directions ≠ 90° Example: calcite GeologyIn.com

F. Cleavage in four directions Example: fluorite

Habit

Habit is the term used to describe the appearance of single crystals or aggregates of crystals

prismatic	-	perfect prisms
bladed	-	elongate flattened crystals
tabular	-	flat, slab-like crystals
fibrous	-	aggregates of slender fibres
acicular	-	slender needle-like
pisolitic	-	rounded, pea-sized masses
platy (micace	eous)	thin sheets
botryoidal	-	like a bunch of grapes
columnar	-	stout column-like crystals
drusy	-	a surface covered with small crystals
reniform	-	kidney shaped
dendritic	-	plant-like, diverging branches
earthy	-	soil-like
massive	-	structureless

Habit

massive

prismatic

fibrous

tabular

bladed

acicular

platy

radiating

Specific gravity

Specific gravity is the relative density of a mineral i.e. the ratio of the weight of the mineral to the same volume of water.

Estimation of specific gravity requires experience gained through the handling of minerals.

As a guide:	AM4	galena	high
	AM5	sphalerite	medium
	AM67	quartz	low

Use terms such as Low, Medium or High not numerical values

Strategy for systematic mineral identification

- Step 1. List all of the physical properties that you can of the unknown mineral (Use suggested format on sheet)
- Step 2. The first division is based on whether the mineral has a metallic or non-metallic lustre.
- Step 3. The second division is based on whether the mineral has a coloured or colourless streak.
- Step 4. The third division is made using the hardness value.
- Step 5. The fourth division is based on the cleavage properties.
- Step 6. Consider other properties e.g. magnetic attraction, effervescence when dripped with dilute HCl

Metallic or Sub-metallic

Streak	Colour	S.G .	Qualitat S.G.	. Н	Remarks	Name, Composition Crystal system
Black	Iron-black	4.7	Н	1-2	Usually splintery or in radiating fibrous aggregates	PYROLUSITE MnO ₂ Tetragonal
	Steel-grey to Iron-black	2.1	L	2.5	1 perfect cleavage. May be in hexagonal shaped plates. Greasy feel	GRAPHITE C Hexagonal
Black to greenish -black	Blue-black	4.7	н	1-1.5	One perfect cleavage. Hexagonal shaped leaves. Greenish-grey streak	MOLYBDENITE MoS2 Hexagonal
Grey-black	Blue -black to lead greasy	7.6	VH	2.5	Three cleavages at right angles In cubic crystals and angular masses	GALENA PbS Isometric
Grey-black	Blue-black	4.5	Н	2	One good cleavage. Bladed crystals showing striations	$\begin{array}{c} \textbf{STIBNITE} \\ Sb_2S_3 \\ Orthorhombic \end{array}$
Bright red	Red to vermillion	8.1	VH	1+	Good cleavages. Admantine Lustre. Usually granular massive or earthy	CINNABAR HgS Rhombohedral

Non-metallic Coloured streak

Streak	Colour	S.G .	Qualitat S.G.	н	Remarks	Name, Composition Crystal system
Dark brown	Black	7.0 to 7.5	VН	5-5.5	One perfect cleavage. With greater amounts of Mn, streak and colour are darker	WOLFRAMITE (Fe,Mn)WO₄ Monoclinic
	Light to dark brown	3.83	M	3.5-4	In cleavable masses or small rhombohedral crystals	SIDERITE FECO ₃ Rhombohedral
Light brown	Light to dark brown	3.9- 4.1	М-Н	3.5-4	6 perfect cleavages. Usually cleavable granular. Resinous to admantine lustre.	SPHALERITE ZnS Isometric
	Brown to black	6.8	VH	6-7	Occurs in twinned crystals. Irregular masses; in rolled grains. Admantine to dull	CASSITERITE SnO ₂ Tetragonal
Light green	Bright green	3.9- 4.03	Μ	3.5-4	Radiating, fibrous, mamillary. May alter to azurite. Effervesces in cold HCL	MALACHITE Cu ₂ CO ₃ (OH) ₂ Monoclinic
Light blue	Intense azure- blue	3.77	Μ	3.5-4	In small crystals, often in groups. Radiating, fibrous. Effervesces in cold HCl	AZURITE $Cu_3(CO_3)_2(OH)_2$ Orthorhombic

Non-metallic Colourless streak Hardness >2.5 <3

Cannot be scratched by a fingernail can be scratched by a copper coin

1. Cleavage prominent

Cleavage	Colour	5.G.	Qualitat S.G.	. н	Remarks	Name, Composition Crystal system
Perfect in one direction	Lilac, greyish white	2.8 to 3.0	L to M	2.5-4	Crystals 6-sided prismatic. Usually small irregular sheets and scales. Pegmatite mineral	LEPIDOLITE K(Li,Al) ₃ AlSi ₃ O ₁₀ (O,OH,F) ₄ Monoclinic
Three directions at right angles (cubic)Colourless, white, red,blueCleavages in 3 directions at 90°White, blue and greyThree directions not at 90° (Rhombohedral)Colourless, white and various tints		2.1 to 2.3	L	2.5	Common salt. Soluble in water, taste salty. In granular masses or in cubic crystals.	HALITE NaCl Isometric
		2.9	L	3-3.5	Massive aggregates. Cleavages difficult to see.	ANHYDRITE CaSO₄ Orthorhombic
		2.71	L	3	Effervesces in cold dilute HCl. Clear varieties show strong double refraction.	CALCITE CaCO ₃ Rhombohedral
	Colourless, white, pink	2.85	L	3.5-4	See later entry	DOLOMITE CaMg(CO ₃) ₂
Three directions 2 at 90°	Colourless, white, blue, yellow, red	4.5	н	3-3.5	Frequently in aggregates of platy crystals. Pearly lustre on basal cleavage.	BARITE BaSO₄ Orthorhombic

Non-metallic Colourless streak Hardness >3 <5.5

Cannot be scratched by a fingernail can be scratched by a copper coin

2. Cleavage not prominent

Colour	S.G.	Qualitat. S.G.	н	Remarks	Name, Composition Crystal system
Colourless, white	3.0- 3.2	Μ	3.5- 5	Commonly in dense compact masses showing no cleavage. Cold HCl has little or no effect	MAGNESITE MgCO3 Rhombohedral
White, yellow, green, brown	5.9- 6.1	H to VH	4.5-5	Common salt. Soluble in water, taste salty. In granular masses or in cubic crystals.	SCHEELITE CaWO₄ Tetragonal
White, yellow, brown, grey	2.6- 2.9	L	5	Usually in hexagonal prisms with pyriamid. Poor basal cleavage. Massive varieties also.	APATITE Ca ₅ (F,Cl,OH)(PO ₄) ₃ Hexagonal
Olive to blackish, green, yellow- green, white	2.2	L	2-5	Massive. Fibrous in the asbestos variety, chrysotile. Frequently mottled green	SERPENTINE Mg ₆ Si ₄ O ₁₀ (OH) ₈ Monoclinic
Light to dark brown	3.83- 3.88	L	3.5-4	Usually cleavable, but may be in compact concretions in clay or iron-stone	SIDERITE CaMg(CO ₃) ₂ Rhombohedral

Listing physical properties

Lustre:	vitreous
Streak:	colourless
Hardness:	5.5-7
Cleavage:	2@60/120
Colour:	dark green
Habit:	tabular
S.G.	Μ
Others:	
Name:	

Listing physical properties

Lustre:	vitreous
Streak:	colourless
Hardness:	5.5-7
Cleavage:	2@60/120
Colour:	dark green
Habit:	tabular
S.G.	Μ
Others:	
Name:	amphibole