U3A Surface Processes Glaciers and glaciation

STREAT

A showing the state


STATER CES

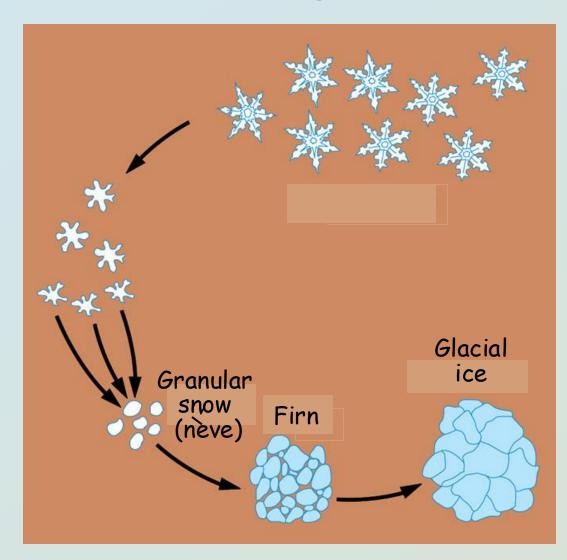
Glaciers

- Systems of flowing ice \rightarrow move from high altitude \rightarrow lower altitude
- accumulation of ice formed from compaction of snow
- about 10% of continental surface covered by ice, mostly glacial
- during coldest part of last glaciation ~16,000yrs ago ~30% of Earth was covered by glaciers
- glaciers \rightarrow flow plastically under pressure

Satellite photograph - Bear Glacier, Alaska

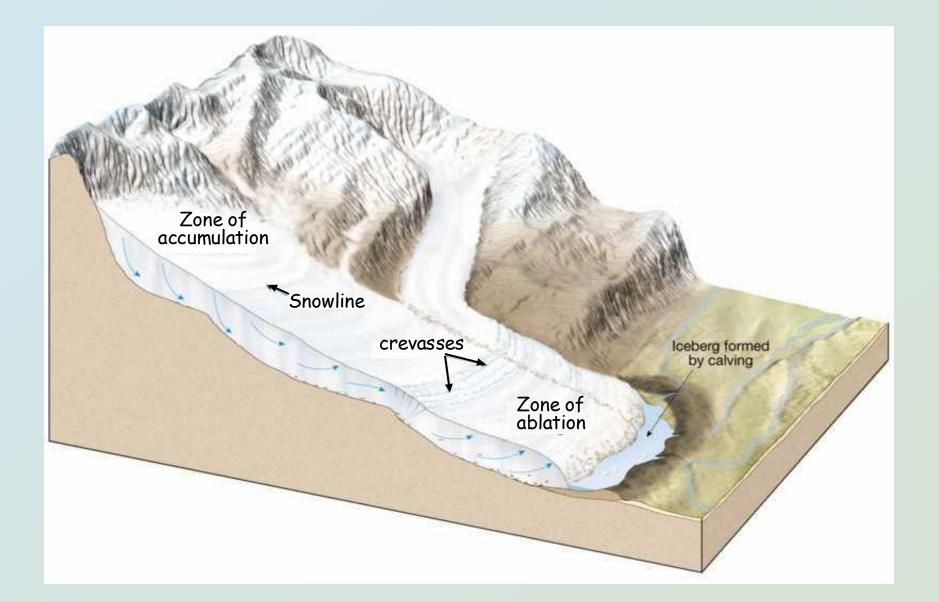
Vatnajökull icecap, Iceland Europe's largest (area = 8,100 km²)

(av. thickness 400m ; max 1100m)



Formation of glaciers

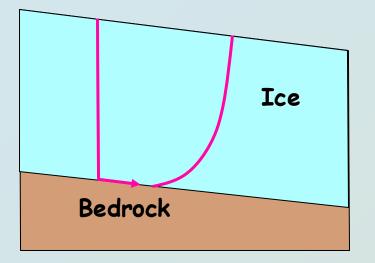
- Originate in permanent snow fields (above snowline)
 - vary from sea level (Antarctic, Arctic) to
 - 4,400m in equatorial Africa also in the Andes and Irian Jaya
 - none in Australia → no permanent snowline nor enough accumulated snow
- Begin with compaction of fallen snow


→ fresh snow is porous with low density → compaction, melting and evaporation → small rounded granules (neve) → compaction → firn → ice → moves downslope under gravity as glacier

Formation of glacial ice

 $\begin{array}{rcl} \text{Snow} & \Rightarrow & \text{Granular snow} & \Rightarrow & \text{Firn} & \Rightarrow & \text{Glacial ice} \\ 10\% \text{ water} & 50\% \text{ water} & 70\text{-}80\% \text{ water} & \text{>}80\% \text{ water} \end{array}$

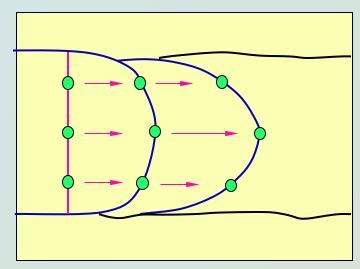
Glacial zones



Movement of glaciers

- Different parts of glaciers move at different rates
- glaciers are faster moving in the centre of the glacier
- upper part of glacier (up to 70m thick) rigid, brittle → crevasses
- typical glacial movement 1m/day, (fastest moving ~45m/day)
- movement occurs in combination of two ways:
 - (1) internally by slow, laminar, plastic flow \rightarrow about 10m/yr
 - (2) by slip at base of glacier
 - temperate glaciers, melting at base \rightarrow water \rightarrow 1400m/yr
 - polar ice frozen to bedrock \rightarrow slow creep \rightarrow few m/yr

Slip and flow


Originally vertical pipe bends and moves downslope

Cross-section

Movement is a combination of basal slip and internal flow

Markers on ice move fastest in centre - plastic flow

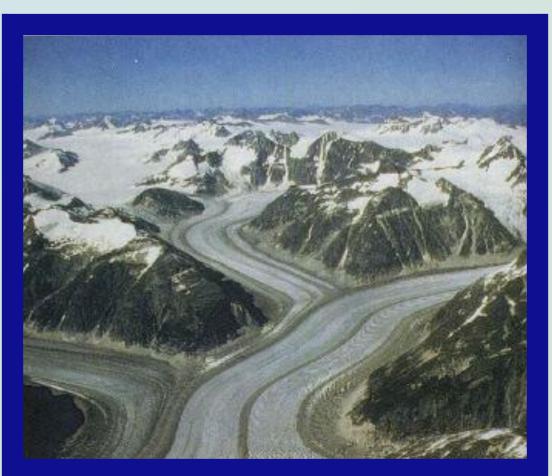
Plan view

Types of glaciers

- Two types: (1) Valley (alpine) glaciers flow along valley channels
 (2) Ice caps and ice sheets flow radially outwards
 from the centre of a dome
- flow determined by topography over which they flow

Athabasca glacier, Canadian Rockies

Alpine glaciers


- Form in high mountain ranges (e.g. Europe, NZ, Americas)
 - form when rate of accumulation of snow exceeds rate of melting
 - form valley glaciers
 - extend below snowline
- typically ~300metres maximum thickness
- carve out glacial valley

Franz Josef glacier, South Island, NZ

Piedmont glaciers

- Produced when two or more valley glaciers coalesce to form a broad piedmont glacier
 - runs out from mountain onto plain

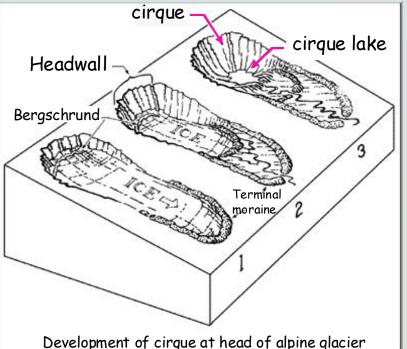
Yentna Glacier, Alaska

Ice caps and ice sheets

- Ice caps
 - large sheets of ice on land (e.g. Iceland) unrelated to oceans
- Continental ice sheets
 - very extensive, up to thousands of km wide (Antarctica)
 - domed features with shallow slopes
 - usually shallowly dipping curved features
 - may exceed 3km in thickness (but not by much)
 - extend to coast, feed valley glaciers, ice shelves
 - e.g. Antarctica, Greenland

Ice sheet - Antarctica

- Vast sheet of ice \rightarrow covers a continent larger than Australia
- moves outwards from a number of large domes
- many glaciers feed ice shelves → floating extension of ice sheet
- increase in gradient of bedrock \rightarrow tension fractures (crevasses)

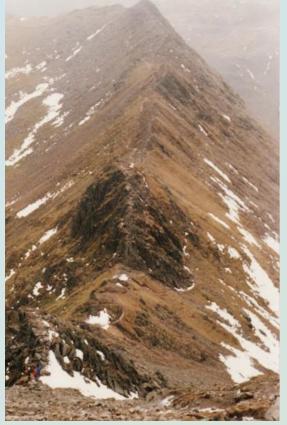


Antarctic ice sheet

Cirques

Cirques

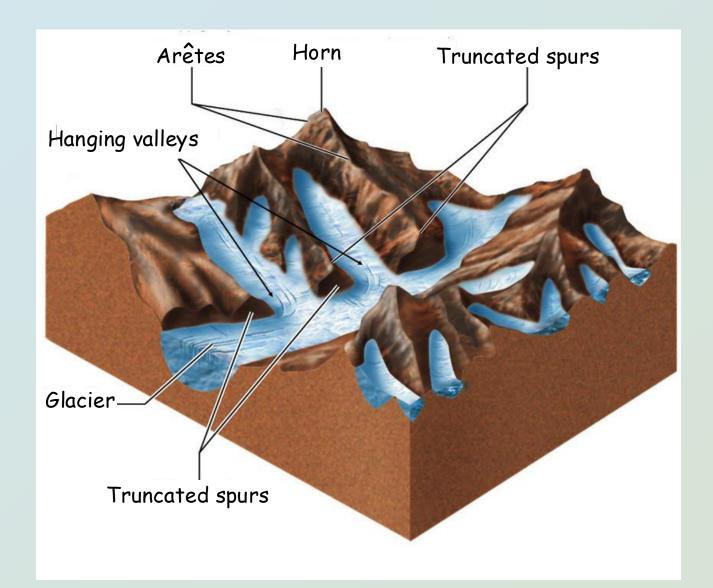
- carved out at head of glacier \rightarrow unique landform
- steep on three sides open downslope (bowl-like depressions)
- starts as snow hollow
 - deepened and enlarged by frost wedging and plucking
 - wedging undercuts walls \rightarrow depression with steep walls



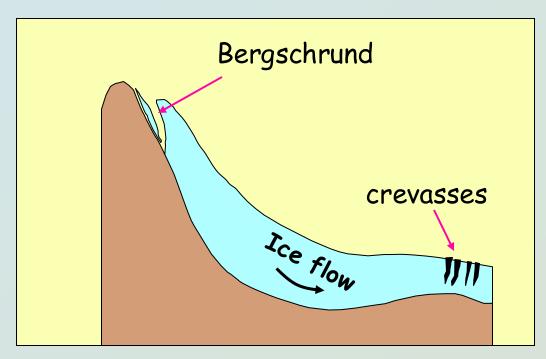
Cirque, Alaska

Cirque growth

Cirques can converge with one another to form horns and arêtes - sideways growth of adjacent cirques → razor ridges (arêtes), pyramid peaks (horns)



The Matterhorn, Switzerland


Arête

Other glacial landforms

Fractures in glacier

- Glacier in cirque develops fractures (crevasses)
 - Bergschrund \rightarrow crevasse against cirque wall
 - crevasses \rightarrow where glacier flows over front rim of cirque

Cirque cross-section

Bergschrund

Bergschrund, Austrian Alps

Glacial erosion - products

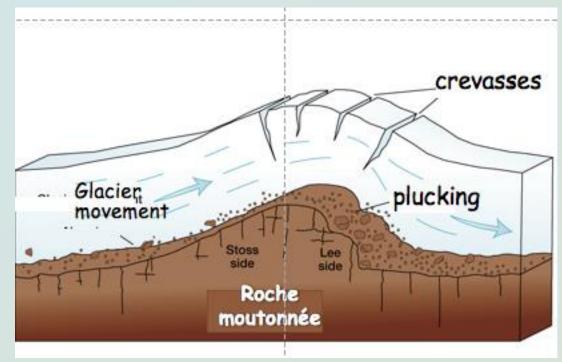
- Base of glacier can freeze to bedrock and incorporates pieces of rock plucked from bedrock
 - like gigantic pieces of sandpaper
- rocks plucked from glacier floor → abrade, carve off other rock fragments
- underlying bedrock grooved and polished \rightarrow striated pavement
- abrasion produces finely ground material
 - "rock flour" \rightarrow turns meltwater streams milky
- glacial features are preserved in Australia

Striated pavement

- Grooves gouged by rock material embedded in base of glacier
- striations allow determination of direction of movement

Glacial striations Ontario, Canada

Striated pavement, Lake Epalock, Vic



Roche moutonnée

- Glacier erodes bedrock → small stream-line hills in bedrock
 - small bedrock knobs, abraded to smooth surface on upflow side
 - plucked on downflow side due to water freezing

in joints, gives rough surface

called roche moutonnée (sheep rock)

Roche moutonnée, Bernese Alps, Switzerland

Glacial valleys

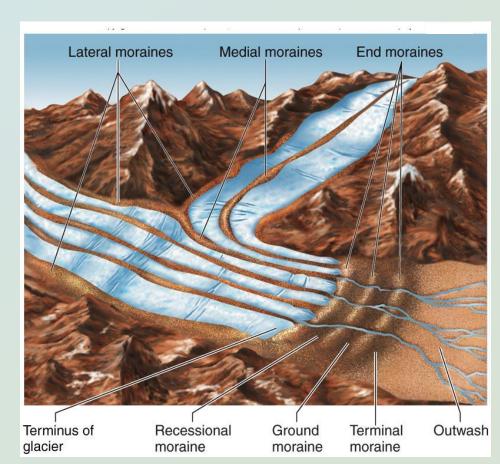
- Filled with glacial ice to high level
- erosion on sides as well as base → U-shaped valleys
 - contrast with V-shaped valleys of rivers
- truncated spurs
 - contrast with interlocking spurs of river valleys → glacier will erode straight through spurs

Leh valley, Indian Himalaya

Hanging valleys

- Glaciers may have a number of tributaries (similar to streams)
- minor tributaries feed more fast flowing trunk glaciers
- erosion in side valleys less than in main valley
 - \rightarrow floors of side valleys deepened at slower rate
- retreat of ice leaves them as hanging valleys

Hanging valley Milford Sound, NZ


Fjords

- Fjords → partially submerged glacial valleys (Norway, Greenland, NZ)
- sea level lower during ice ages \rightarrow water locked up as ice
 - glaciers able to erode to lower elevation
- glaciers retreat → sea level rises
 - drowns glacial valleys
 - forms fjords
- fjords
 - characterised by steep walls
 - often form deep water inlets Fjordland, South Island, NZ

Glacial deposits - moraines

- Glaciers very effective in eroding → produce large volume of different materials as they cut through countryside
- glaciers occur where weathering is very active
- glacial deposition: material transported by glacier → moraine

Ground moraine

- Derived from material plucked from underlying bedrock
- may be washed out of glacier by melt water or left behind by retreating glacier

Lateral moraine

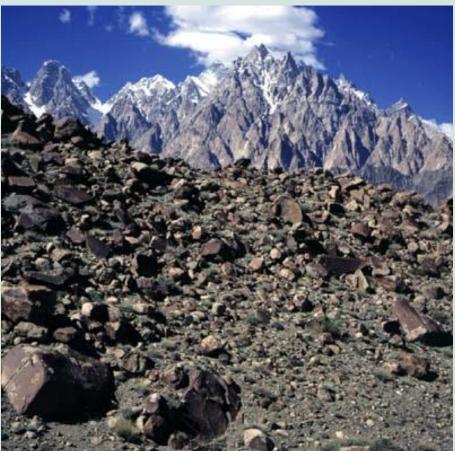
- Lateral moraines form ridges along the edges of glaciers
- moraine derived from material broken from steep glacier valley walls
- ice wedging plays an important role in breaking up wall rocks

Deposit of lateral moraine in Austria, left behind by a retreating glacier

Medial Moraine

- Medial moraine
 - formed from lateral moraines when two glaciers merge

form centre line of new glacier

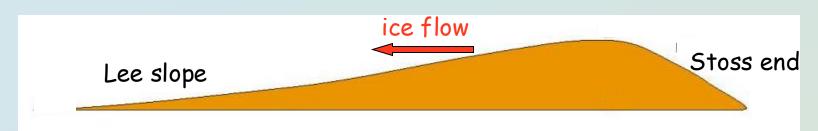


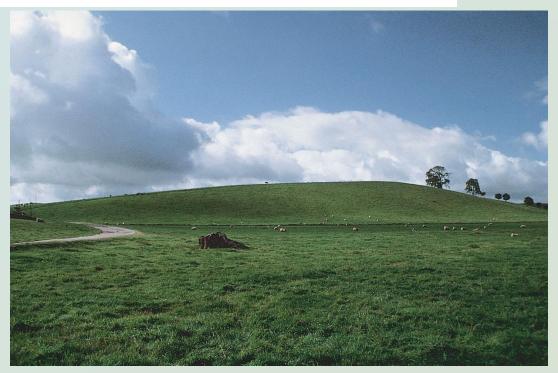
Medial moraines Edward Bailey glacier, Greenland

Terminal moraine

- Terminal moraine
 - form where rock material is dumped by melting snout of glacier
 - often forms high banks
 - may dam valleys
 - may eventually be washed
 away by streams

Till

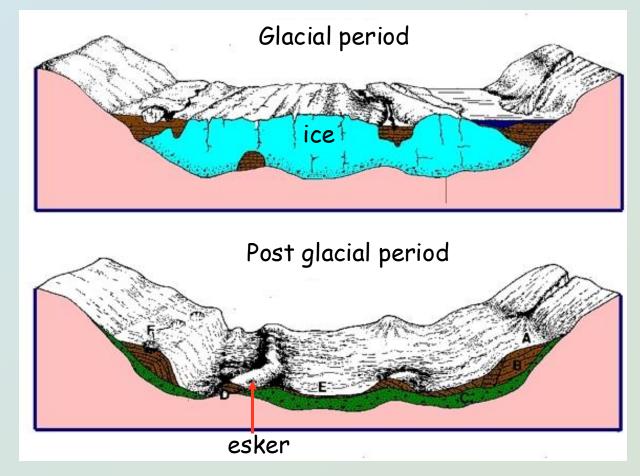

- Till \rightarrow material deposited by glaciers
- very poorly sorted glacial deposits (different to river sediments)
- rock flour, sand, large angular pebbles \rightarrow boulder clay
- when lithified forms a rock called tillite



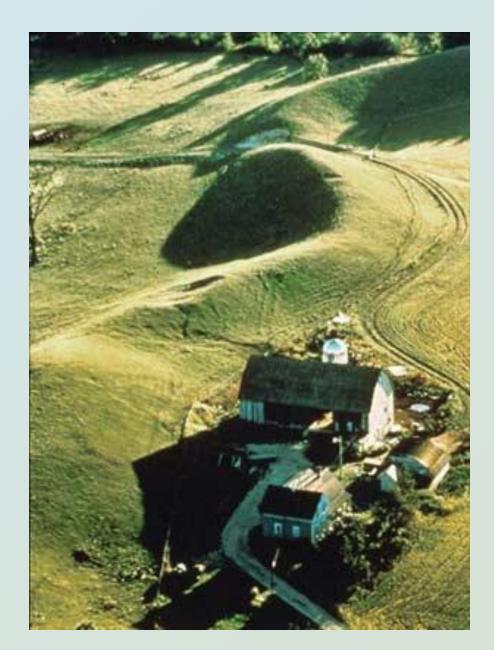
Glacial till Lake Ontario, Canada

Drumlins

- small elongate ridges of till left behind after glacier retreat
- formed by glaciers flowing over soft sediment
- up to 1km long, 500m wide, 50m high. Aligned in flow direction


Drumlin, Yorkshire, UK

Fluvioglacial deposits


- Meltwater streams from snout of glacier dumps sedimentary material → till
 - silt and sand washed away downstream called outwash
- high bed-load component → streams generally braided
- outwash fans
 - large fan-shaped deposits
 - build up downstream of deposit

Eskers

- Glaciers may be drained by tunnels along floor of glacier
- many of these tunnels meander like a river
- glacier retreats \rightarrow channel-fill sediment left behind \rightarrow esker

Esker Wisconsin, USA

Lacustrine glacial deposits

Lakes in glacial areas (low energy)

- subsidence in land surface due to overlying ice sheet
- floors often accumulate laminated sediment
 - alternate light and dark layers
 - varves
- light layers
 - summer sediment input
- dark layers
 - lake frozen \rightarrow little sedimentation
 - organic material

Varves, Missoula, USA

Lake varves, Missoula, Montana, USA

Icebergs and dropstones

- Icebergs
 - glaciers that enter the sea will break up to form icebergs
 - icebergs carry moraine offshore to deeper water where sea-floor sediments are fine-grained
- icebergs drop debris as they melt
 - boulders and pebbles
 - impact into fine-grained, soft sea floor sediments
 - deform underlying layering
 - "dropstones"

Glacial deposits and a dropstone

Glacial dropstone, Permian rocks, eastern Australia

Glacial erratic

- Exotic boulder dumped by retreating glacier
- can be transported large distances (hundreds of Km)
- examples around western Tasmania

Yeager rock, Washington State, USA

Periglacial environments

- Periglacial environments
 - cold areas surrounding, but not directly associated with glaciers
 - glacial material can be reworked in periglacial environments
- Permafrost
 - permanently frozen ground
 - surface layer (<2m) may melt in
 - summer
 - overall precipitation low, so snow
 does not build up
 - can penetrate to depths of 700m

Permafrost, Fairbanks, Alaska

Periglacial soils

- Freeze/thaw cycles of surface layer
 - slow churning of rock and soil
 - moves material around, flow \rightarrow solifluction
- frost heaving
 - growth of ice in soil causes vertical movement of material → bulges in soil

Solifluction lobes in soil Siberia

