U3A Geology

Introduction

- Skarns are calc-silicate rocks that form through contact or regional metamorphism or metasomatism from crystallising granite intrusion
- Skarns can form in almost any lithology (granite, shale, basalt) but, the majority are found through replacement of calcitic or dolomitic marble
- There are two genetic classes:
 - (1) Reaction skarns formed in response to increasing temperature with diffusion between contrasting rock types
 - (2) Metasomatic skarns (ore skarns) formed through mass transport by hot saline evolving fluids, derived in part from a crystallising magma

Skarn definition

- Skarns defined by mineral assemblage → feature wide range of calc-silicate minerals usually dominated by garnet and pyroxene
- Mg and Ca skarns describe the dominant composition of the protolith that is commonly carbonate (limestone, dolomite)
- calc-silicate hornfels → describes fine-grained rocks formed from the metamorphism of impure carbonate units (marls)
- skarns can be classified according to rocks that they replace:
 Exoskarn replacement of country rocks outside intrusion
 Endoskarn refers to skarn mineralisation within intrusion

Classification of skarns

Skarns can be classified on the basis of descriptive features:

(1) protolith composition e.g. calcic skarns, magnesian skarns

(2) rock type e.g. andradite-wollastonite skarn, diopside skarn

(3) dominant ore minerals present e.g. tungsten skarn, copper

skarn, magnetite skarn

Skarn evolution

- Skarns are found adjacent to intrusions, along fractures and major shear zones, in shallow geothermal systems and deeply buried regional metamorphic terrains
- they can form during contact or regional metamorphism from a variety of metasomatic processes involving fluids of magmatic, metamorphic or meteoric origin
- in many skarns there is a transition from early formation of reaction skarn → later metasomatism → metasomatic skarn
- late metasomatism → produces coarse-grained, ore-bearing skarns
- complex metasomatic fluids containing magmatic components e.g. Fe, Si, Cu etc produce a continuum between purely metamorphic and purely metasomatic processes

Skarn evolution

Skarn mineral characteristics

Skarn mineral assemblages reflect the composition of the protolith and any added ionic species

Mineralogy

Calcic skarns: diopside, hedenbergite, grossular and andradite garnet, wollastonite, vesuvianite, calcite, amphiboles, epidote

Magnesian skarns: forsterite, humite, chondrodite, talc, tremolite, serpentine

Ores

Tungsten, iron, talc, copper, molybdenum, lead, zinc, tin (?)

Common skarn gangue minerals

Diopside (CaMgSi₂O₆)

Grossular garnet [Ca₃Al₂(SiO₄)₃]

Wollastonite (CaSiO₃) and vesuvianite $[Ca_{19}Fe(Mg,AI)_8(SiO_4)_{10}(Si_2O_7)_4(OH)_{10}]$

Common skarn gangue minerals

andradite garnet $[Ca_3Fe_2(SiO_4)_3]$ with wollastonite and diopside

epidote [Ca₂FeAl₂(Si₂O₇)(SiO₄)(O,OH)₂]

actinolite [Ca2(Mg,Fe)5Si8O22(OH)2]

forsterite (Mg_2SiO_4) in marble

Reaction skarn

- Reaction skarns form from contact or regional metamorphism
- heat from metamorphism can cause a chemical reaction between certain contrasting rock layers
- reaction skarns can form from isochemical metamorphism (i.e. no addition of elements to bulk composition)
- there is metasomatic transfer of components between adjacent lithologies on a small scale
- e.g. diffusion reaction $CaCO_3 + SiO_{2(aq)} \rightarrow CaSiO_3 + CO_2$ calcite wollastonite

Formation of reaction skarns

- Where thin adjacent beds of limestone and mudstone are contact metamorphosed → some elements diffuse across the boundary aided by pore water
- diffusion produces reaction skarn zonation between marble and hornfels
- the typical zonation is a wollastonite zone bordering the marble graduating into grossular garnet then diopside bordering the hornfels

Reaction skarn, King Island, Tas.

- m = marble
- w = wollastonite
- d = diopside
- g = grossular garnet
- h= hornfels

Formation of a reaction skarn

metamorphism

marble

wollastonite skarn grossular garnet skarn

diopside skarn

hornfels

Zonation in skarns

AR1387 Zoned hornfels, King Island

grossular garnet

diopside hornfels hornfels

AR1334 Diopside hornfels, King Is.

AR1393 Skarnised marble, King Is.

m = marble g = grossular garnet h/dh = hornfels/diopside hornfels

Skarn zonation

Effect of depth of formation of skarn

- A fundamental control on skarn size, geometry and alteration is the depth of formation
- ambient wallrock temperature at 2km depth would be 70°C, whereas at 12km \rightarrow 420°C
- with added influx of heat produced by igneous activity \rightarrow volume of rock is larger and longer lived than at shallower depths
- strong hydrofracturing associated with shallow intrusions greatly increases permeability of host rocks for metasomatic and later meteoric fluids
- retrograde alteration during cooling and possible reaction with meteoric water is more intense at shallower depths

Metasomatic skarn

- Metasomatic skarns form when hydrothermal fluids originating from magmatic, metamorphic or meteoric sources infuse ions into the skarn
- the resulting skarn may consist of a variety of different minerals
- composition of these minerals depend on the composition of the hydrothermal fluids and the original composition of the protolith
- magmatic metasomatic fluids may introduce metallic ion species into the primary skarn forming ore skarns

Geochemistry of skarn deposits

- Fluid inclusion studies have determined high temperatures (up to 700°C) and high salinities (up to 50% NaCl equivalent?)
- later fluids associated with ore mineralisation are (300-500°C)
- fluid inclusions commonly contain daughter minerals (NaCl, KCl, CaCl₂, FeCl₂, CaCO₃, CaF₂, Fe₂O₃ etc)
- magmatic fluids have KCl > CaCl₂ whereas high CaCl₂ indicates interaction more with sedimentary wall rocks
- most large scale skarn deposits form from diverse fluids. Later alteration indicates at least partial mixing with meteoric waters

Skarn genesis

Stages recognised in the evolution of skarn deposits:

- 1. Shallow intrusion into carbonate sediments (700 900°C)
- Contact metamorphism (500 700°C) little or no chemical reaction between intrusion and limestone. Impurities in marble react to form minor calc-silicate minerals plus CO₂
- Metasomatism and iron-rich skarn formation (400 600°C).
 Early magmatic fluids dominated by Fe-chloride complexes
 Ca-Fe silicates precipitating along with magnetite
- 4. Superposition of oxides and sulphides at (300 500°C). Scheelite and magnetite normally form prior to the formation of sulphides
- Late hydrothermal stage (200 400°C). During this stage, skarn minerals may be intensely altered (influx of meteoric water)
 e.g. calcite, hematite, quartz, pyrite, epidote, chlorite, other sulphides, amphibole, serpentine,

Major skarn minerals (non-ore)

Skarn mineral assemblages reflect the composition of the protolith and added ionic species

garnet - grossularite $[Ca_3Al_2(SiO_4)_3]$, and radite $[Ca_3Fe_2(SiO_4)_3]$

pyroxene - diopside (CaMgSi₂ O_6), hedenbergite (CaFeSi₂ O_6)

olivine - forsterite (Mg₂SiO₄)

```
pyroxenoid - wollastonite (CaSiO<sub>3</sub>)
```

amphibole - tremolite [Ca2Mg5Si8O22(OH)2], ferroactinolite [Ca2Fe5Si8O22(OH)2]

epidote - epidote [Ca₂(Fe,Al)₃(SiO₄)₃(OH), allanite [(Ca,REE)₂(Fe,Al)₃(SiO₄)₃(OH)]

other - axinite [(Ca,Mn,Fe,Mg)₃Al₂BSi₄O₁₅(OH)],

vesuvianite [Ca₁₀(Mg,Fe,Mn)₂Al₄Si₉O₃₄(OH, Cl, F)₄]

Ore skarn deposits

- The majority of skarns are devoid of economic mineralisation
- the majority of the world's economic skarn deposits occur in calcic exoskarns (replacement of limestone)
- Ores of W, Mo, talc, Cu, Au, Fe, Pb, Zn, and Sn (?) occur in skarns
- deposits are generally smaller than other deposit types but are important sources of W and Fe ores

Common ore minerals in ore skarns

Magnetite (Fe_3O_4) skarn, Kara, Tas.

Scheelite (CaWO₄) - magnetite skarn, Mt Lindsay, Tas

King Island scheelite deposits

• >14Mt of ore at 0.8% WO₃ and 0.3% MoO₃

- protoliths were carbonate and pelitic rocks of Late Proterozoic age
- high temperature (600 800°C) metasomatic, saline fluids
- orebodies stratabound 5-40m thick
- Skarn types:

diopside-grossular garnet hornfels pyroxene-biotite-grossular garnet hornfels biotite-pyroxene-actinolite hornfels banded andradite skarn andradite-diopside-quartz-epidote-actinolite-zoisite skarn

• all skarn types are mineralised with scheelite (CaWO₄)

Geological setting, King Island

- Deposit located at Grassy on SE coast of King Island
- hosted by a (±200m thick) Neoproterozoic to Lower Cambrian unit of dolomite, shale and tillite overlying ~7000m thick Neoproterozoic pelitic sequence
- this sequence forms a narrow strip along coast and is overlain to SE by >250m of Cambrian basic lavas, tuffs and agglomerate
- further west → more intensely metamorphic sequence cut by
 Proterozoic granites
- whole sequence intruded by Late Devonian to Lower Carboniferous granites

Mineralisation

- Mineralisation → occurs as series of pods and lenses in a skarn composed of actinolite-biotite and actinolite hornfels, marble, blotchy and banded diopside-grossularite hornfels and massive andradite skarn
- scheelite occurs as finely disseminated grains \rightarrow highest grades associated with andradite garnet [(Ca₃Fe₂(SiO₄)₃]
- grossular-rich lenses only carry low grades of scheelite
- majority of scheelite is powellite (CaMoO₄) rich

X-section 10525N, North Bold orebody, King Island (after Brown 1990)

No. 1 and Dolphin orebodies (Danielson & Brown 1976)

AR1386 andradite-diopside skarn, King Is.

Kara Fe-W skarn deposit

- Kara deposit \rightarrow small open cut ~40km south of Burnie NW Tas.
- mine products magnetite (Fe_3O_4) and scheelite ($CaWO_4$)
- to north of deposit \rightarrow a few magnetite skarns hosted by dolostone
- pit contains series of skarns related to Devonian Housetop Granite intruding Ordovician Gordon limestones
- a quartz-epidote endoskarn is developed in the granite contact zone

Skarn zonation, Kara

- The skarn is zoned, four stages recognised in the development of skarn:
 - (1) hedenbergite ± andradite ± vesuvianite ± wollastonite ± scheelite
 - (2) andradite-vesuvianite-magnetite ± scheelite ± apatite ± quartz
 - (3) magnetite-amphibole-epidote-fluorite-quartz ± scheelite ±
 ± carbonate ± pyrite ± cpx
 - (4) hematite ± calcite ± quartz

Kara skarn development

- Stages 1 and 2 mineral assemblages → early hydrous skarn formation dominated by hedenbergite and garnet
- Stages 3 and 4 minerals represent late skarn-forming phases and pervasively replace early mineral assemblages
- scheelite occurs in Stages 1-3 and is disseminated mostly in magnetite-rich skarn
- minor sulphides are present in skarns and include pyrite, molybdenite, chalcopyrite, arsenopyrite, bismuthinite (Bi₂S₃) and galena
- skarn weathering zones → produce some unusual secondary
 Fe, W and Cu minerals

X-section 5820N Kara NO.1

AR1265 Magnetite skarn, Kara, W. Tas.

Fluid studies -Kara

- Filling temperatures of primary fluid inclusions show → systematic decrease from 460-620°C in Stage 1 to 230-360°C in Stage 3
- salinities vary from 8-12% NaCl equivalent in Stage 1 to 12-18% in Stage 2
- stable isotope data indicates magmatic hydrothermal fluids were responsible for Stage 1 and 2
- Stages 1 and 2 were succeeded by convective circulation of mixed magmatic hydrothermal fluids and heated groundwater
Brown's Creek Au-Cu skarn

- The Brown's Creek Au-Cu skarn deposit is located ~40km south of Orange, NSW
- the main skarn rock in the deposit is wollastonite marble, highly mineralised by metallic sulphides, native gold and tellurides
- related alteration included metasomatised Ordovician Blayney volcanics and marblised interbedded Cowigra limestone
- magmatic fluids were derived from Carcoar granodiorite and the Mine Dyke Group, a more felsic phase

Garnet-actinolite skarn Brown's Creek, NSW

AR1343 endoskarn Brown's Creek, NSW

Colebrook Hill ferro-axinite skarn

- Colebrook Hill is located near Rosebery in W. Tasmania
- location of an axinite-actinolite-arsenopyrite skarn
- metasomatic boron-rich fluids reacted with carbonate to form skarn
- violet-brown ferroaxinite $[Ca_2(Fe,Mn)Al_2BSiO_4O_{15}(OH)]$ and actinolite are the most abundant minerals present
- other minerals include datolite [CaBSiO₄(OH)], danburite [CaB₂(SiO₄)₂], arsenopyrite (FeAS) and calcite

Colebrook Hill

Colebrook Hill, Tas.

axinite-actinolite skarn, Colebrook Hill, Tas.

Tenth Legion Fe-skarn

- Tenth Legion Fe-skarn near Zeehan, W. Tas. → hosted by Proterozoic Oonah Formation quartzites and carbonates
- these rocks pass up into Cambrian sediments and volcanics
- all rocks are intruded by Devonian Heemskirk Granite
- deposit is magnesian carbonate-hosted magnetite skarn, hosted within the Oonah Formation
- ore bodies extend ~500m along strike

Mary Kathleen uranium skarn

- Mary Kathleen is a uranium deposit located ~60km east of Mt Isa, Qld
- the former mine produced 10,000tonnes of U_2O_3 and 200,000tonnes of rare earth oxides
- uranium ore was hosted by garnetiferous calc-silicates (garnetites) with micaceous schists, quartzite, scapolite-diopside, granulites and marbles
- intrusive gabbro, porphyry and dolerite dykes were produced over a period of ~500myr
- U mineralisation occurs as uraninite (UO₂) present as fine disseminations in allanite [(Ca(Ce,La)(Al,Fe)₃(SiO₄)₃(OH)] that usually replaces garnet

Mary Kathleen geological setting

- Main sequence within mine comprises the Mary Kathleen Group overlain by Mount Albert Group
- both groups intruded by 1740-1720Ma Wonga Granite
- Mary Kathleen Group >3000m thick → sandstone, siltstone, and shale that are commonly calcareous with greywacke, calcareous breccia, minor felsic and mafic volcanics, BIF and conglomerate (hosts skarn mineralization)
- Mount Albert Group composed of >300m of sandstone, dolomite, shale, limestone and conglomerate

AR1554 allanite-garnetite, Mary Kathleen, Qld

When is a skarn not a skarn?

- Many deposits that are described as skarns are really greisen associated deposits
- true ore skarns are calc-silicates and are formed by early Cl-rich fluids → pyroxenes, garnets, amphiboles, magnetite, scheelite
- with the evolution of later stage high temperature F-B enriched solutions → the rocks through which the fluids pass are strongly leached
- leachates and greisen fluids react with skarn minerals to form new mineral assemblages that include fluorite, muscovite, biotite and tourmaline
- K, Al, Sn, Th are leached from endogreisen

Lost River, Alaska, Sn-W deposit

- The Lost River deposit, Alaska has been described as a Sn-W-Be-Zn-Pb-Cu-Ag
- within the carbonate-replaced bodies → five principal assemblages:
 (1) andradite garnet
 - (2) fluorite + magnetite + vesuvianite
 - (3) biotite + fluorite + tourmaline + cassiterite
 - (4) sulphides
 - (5) carbonate + chlorite
- potassic and borosilicate overprint atypical of skarns (and Sn)
- granite source of fluids \rightarrow strongly greisenised
- deposit should be classified as an exogreisen deposit