

#### Introduction

- Regolith → blanket of unconsolidated and secondarily cemented, heterogeneous earth materials covering solid bedrock
- regolith materials can be broadly sub-divided into either in-situ or,
   transported materials e.g. alluvial, colluvial lacustrine sediments
- · includes soil, broken and altered rocks and related materials
- regolith on Earth originates from weathering and biological processes
- uppermost part of regolith that typically contains organic matter
  is conventionally referred to as soil between the soil and the
  bedrock are two zones called the pedolith and saprolith

## Regolith

- The regolith of a region is a product of a long term weathering history
- leaching and dispersion are dominant during initial phase of weathering under humid conditions
- regoliths vary from a few metres to >150m thick
- regoliths on steep slopes and uplifting regions are generally shallow
- deeply weathered regoliths are widespread in inter-tropical belt particularly on continental landmasses between 35°N and 35°S

## Formation of deeply weathered regolith

- Conditions for formation of deeply weathered regolith include moderate relief to allow leaching products of chemical weathering
- a second condition is long periods of tectonic stability, tectonic activity and climate partly erode regolith
- rocks weather at ~20m per million years → deep regoliths require several million years to develop
- the third condition is humid tropical to temperate climate → enable reactions to react more rapidly
- deep weathering can occur in cooler climates but over longer periods

## Soil regolith profile (Huggett 2023)

| Organic<br>horizons                                                             | O1 Litter                                                                                                                    |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | O2 Decomposed animal and                                                                                                     |
|                                                                                 | plant remains                                                                                                                |
| Mineral horizons<br>(the solum, the<br>upper part of<br>which is the<br>topsoil | A Humic horizon                                                                                                              |
|                                                                                 | E Eluvial horizon                                                                                                            |
|                                                                                 | B Illuvial horizon                                                                                                           |
| Mineral horizon<br>(substrate)                                                  | C Unconsolidated material from which the solum may have been formed (sometimes called parent material). Part of the regolith |
| Consolidated<br>bedrock                                                         | R Largely unweathered rock                                                                                                   |



## Soil regolith

- Solum → upper part of soil profile where layers have undergone soil forming processes
- Humic horizon → sub-surface layer with significant accumulation of organic matter, often alongside Fe and Al compounds
- Eluvial horizon → characterised by removal of materials e.g. clay,
   Fe, Al and organic matter through eluviation → light coloured zone
- Illuvium horizon → horizon that is enriched by addition of materials from overlying horizons

## Lateritic regolith profile (Eggleton 2001)



#### Pedolith

- Pedolith → upper part of regolith profile → characterised by weathering products that have lost their fabric
- introduction of salts or colloids into one horizon from another by downwards percolating water
- the principal horizons are the plasmic (clay) zone mottled zone and lateritic residuum
- subdivision of the pedolith is based on replacement of primary fabrics and concentration of elements, primarily Fe and Si
- mottled zone and lateritic residuum are caused by local segregation and accumulation of Fe

## Saprolith

- Saprolith → lowest part of regolith profile in which the primary fabric is retained
- fabrics imply pseudomorphism in which original minerals are replaced or partially replaced by alteration products without change of fabric
- · there is little or no change in volume of material
- principal horizons are saprock and saprolite with saprolite comprising at least two-thirds of the weathered profile

## Lag

- Lag → accumulated coarse, unconsolidated, resistant rocky material
- · left behind by erosional processes like wind, water and ice
- · forms a surface layer called a lag deposit



Lag

## Sturt Stony desert, South Aust.



#### Gossan

- Gossan → intensely oxidised weathered or decomposed rock, usually at upper part of ore deposit or mineralised vein
- in most gossans, the iron cap is composed of Fe-oxide and quartz,
   often in the form of boxwork
- in other cases, hematite, limonite, goethite and jarosite exist as pseudomorphs replacing primary ore minerals
- some gossans are black and contain Mn-oxides such as pyrolusite,
   manganite and psilomelane
- Broken Hill ore deposit discovered through recognition of outcropping gossan

### Gossan



Gossan outcrop, Iron Mountain Cu-Fe deposit, Califiornia

#### Laterite

- Laterite → soil type rich in Fe and Al normally formed in hot and wet tropical areas
- nearly all laterites are rusty red coloured because of high
   Fe content
- they form from intense weathering of underlying parent rocks with the leaching out of more soluble cations (e.g. Na, K, Mg)
- thick laterite layers are porous and slightly permeable may be aquifers in some rural areas

#### Laterite

- · Laterites are a source of Al (bauxites) and Ni (Ni laterites)
- formed from leaching of parent sedimentary, metamorphic and igneous rocks
- residues of leaching → insoluble oxides, hydroxides and sulphates
   of Fe, Al and Si under elevated temperature conditions
- an essential feature for formation of laterite is repetition of wet and dry seasons
- rocks are leached by percolating rainwater in wet season, resulting solution brought to surface by capillary action
- · easily leached ions (Na, K and Mg) washed away next wet season

## Regolith (lateritic profile)

- Laterite may be used to refer to ferricrete at top of complete weathering profile or more informally to describe entire profile
- beneath the ferricrete is a mottled zone, an active profile close to the water table
- above the water table is a zone of active weathering because it is in contact with abundant moisture and oxygen
- the active weathering front is located some distance below the water table and marks the boundary between fresh and weathered rock (saprock)

# Laterite profile



## Regolith (lateritic profile)



### Ferruginous zone

- In the ferruginous zone, nodules and pisoliths are abundant and may be cemented to form duricrust
- zone is composed dominantly of secondary oxides and oxy-hydroxides
  of Fe (goethite, hematite, maghemite), hydroxides of Al
  (e.g. gibbsite, boehmite) and kaolinite [(AlSi<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>]
- · consists of loose lateritic gravels and/or lateritic duricrust
- lateritic gravels are the unconsolidated component of lateritic residuum → commonly overlie the lateritic duricrust
- the gravels consist of nodules, pisoliths and fragments in the size range 2-64mm

### Duricrust (hardpan)

- · Duricrust → hard indurated layer on or near soil surface
- · duricrust can range in thickness from a few cm to several metres
- duricrusts typically form by accumulation of soluble minerals deposited by waters that have moved upward, downward or laterally by capillary action
- precipitation of duricrust commonly assisted by evaporation in arid conditions
- there are different types of duricrust; ferricrete (dominated by Fe-oxides); alcrete (bauxite) dominated by Al; silcrete (by Si); calcrete (by  $CaCO_3$ ); gypcrete (by gypsum)

# Duricrust (hardpan)



Hardpan capping, Buckley's breakaway, WA

### Breakaway

Breakaway 

eroded cliff or slope often located at the edge of a
mesa or plateau where harder, more resistant rock layers
(duricrust), cap softer underlying layers

· over time, erosion of softer material causes cap rock to fracture

and crumble resulting in colourful escarpments



Buckley's breakaway, WA

### Silcrete

- Silcrete is strongly silicified, indurated regolith, generally of low permeability and commonly having a conchoidal fracture
- silcretes represent complete or near complete silicification of a precursor regolith horizon by the infilling of interstices with silica
- silcretes are common in the arid regions of Australia and Africa,
   often forming resistant cap rock
- silcrete is extremely hard and was used by the Australian aborigines for stone tool manufacture

## Silcrete



Silcrete, Snowy River, NSW

### Calcrete (or caliche)

- Calcrete (also called caliche) is a shallow layer of soil or sediment cemented by the precipitation of  $CaCO_3$
- $CaCO_3$  first precipitates as small grains on sedimentary particles as grain coatings thicken  $\rightarrow$  adjacent grains cemented together
- calcrete is a common feature of arid or semi-arid areas
   throughout the world it has a diversity of origins
- major process of forming calcrete begins when  $CaCO_3$  is leached from upper soil horizons, precipitates deeper to form calcrete
- some calcrete forms by upward movement of water through capillary action  $\rightarrow$  as water evaporates  $\rightarrow$  minerals precipitate

## Calcrete (caliche)



Calcrete outcrop, Texas, USA

#### Ferricrete

- Ferricrete → hard, erosion-resistant layer of sedimentary rock, usually conglomerate or breccia that has been cemented into duricrusts by Fe-oxides
- Fe-oxide cements are derived from the oxidation of percolating
   Fe-salt solutions
- ferricretes form at or near the land surface and may contain sediments that have been transported from outside the immediate area of the deposit

### Ferricrete



Ferricrete, Niger



Ferricrete, Ranworty, UK

### Alcrete

- Alcretre  $\rightarrow$  also known as aluminocrete is a type of duricrust formed by the accumulation of Al-oxides and hydroxides
- particularly common in seasonally-wet humid to sub-humid tropical environments
- form through leaching of more mobile elements (K, Na, Mg) from weathering profiles
- alcrete is closely related to bauxite with extremely high concentrations of Al being classified as bauxite

## Regolith - mottled zone

- · The mottled zone lies just below the duricrust
- mottling is composed of different coloured patched materials,
   generally red/brown with grey/white matrix
- mottled zone is predominantly kaolinite and hematite or goethite increasing cementation by hematite towards top of zone
- · mottles have sharp, distinct or diffuse boundaries
- mottles typically range in size from 10-100mm but may reach several metres in size
- mottling can develop in both plasmic and saprolite zones

### Regolith - mottled zone (Bronzewing, WA)



Mottled zone, Bronzewing open pit



#### Plasmic zone

- Plasmic zone → mesoscopically homogenous layer of weathering profile dominated by clay or silty clay
- characterised by its pale colour, presence of clay minerals,
   particularly kaolinite with dispersed Fe oxides
- transitional zone between mottled zone and saprolite produced by loss of fabric without significant chemical and mineralogical changes
- loss of lithic fabric caused by solution and authigenesis of minerals and mechanical processes (shrinking, swelling of clay)
- plasmic zone not always present

## Saprolite

- Saprolite → chemically weathered bedrock that forms in lower zones of regolith profiles → preserved fabric
- · saprolite has more than 20% of weatherable minerals altered
- more intense weathering results in a continuous transition from saprolite to laterite
- in lateritic regoliths, saprolite may be overlain by upper horizons of residual laterite
- weathering formed kaolinitic [Al<sub>2</sub>SiO<sub>5</sub>(OH)<sub>4</sub>] saprolites
- iron compounds are primary colouring agents in saprolite e.g. goethite yellow (fine), brown (coarse)

# Saprolite



### Saprock

- Saprock -> compact, slightly weathered rock of low porosity, with
   <20% of the weatherable minerals altered</li>
- weathering occurs along mineral boundaries, cleavages, joints,
   shears and fractures
- first signs of weathering are generally oxidation of sulphides and carbonates or breakdown of feldspars
- · upper and lower boundaries may be sharp or gradational
- may vary markedly in depth and thickness over short distances and with only minor lithological changes

# Saprock





## Nickel laterite deposits

- Ni-laterite deposits are surficial weathered rind formed on weathered ultramafic rocks
- · they account for 73% of the world continental Ni deposits
- formed by intensive weathering of olivine-rich ultramafic rocks e.g. dunite, peridotite, komatiite and serpentinised derivatives
- serpentinite consists mainly of the Mg silicate serpentine  $\{Mg_6[Si_4O_{10}](OH_8\}$  and contains 0.03% Ni
- · primary Ni content is strongly enriched in course of laterisation
- two types of lateritic Ni ore recognised: (1) limonite types
   (2) silicate types

### Ni laterite



Ni laterite in outcrop, New Caledonia

#### Typical laterite profile New Caledonia (Ulrich 2010)



#### Ni laterite character

- Ni laterite deposits are very large tonnage deposits in the range of 20Mt of 1% Ni
- they are composed of long tabular bodies over several hundred metres long but only tens of metres thick
- deposits consist of predictable weathering profiles that includes five zones
- from the base upwards they are unweathered ultramafic bedrock,
   saprolite, clay-rich, limonite zone and ferricrust

## Types of Ni-laterite deposits

- Limonitic type deposits are highly enriched in Fe due to strong leaching of Mg and Si
- · they comprise mainly goethite containing 1-2% Ni
- Silicate type (saprolite type) Ni ore forms beneath the limonite zone
- it contains 1.5-2.5% Ni and consists largely of Mg-depleted serpentine
- there are minor amounts of the mineral garnierite  $[(Mg,Ni)_3Si_4O_{10}(OH)_2.2H_2O]$  with a high Ni content (20-40%)
- · all Ni in silicate zone → leached down from overlying goethite zone

#### Ni-laterite zones

- In saprolite zone, Ni is contained in hydrous Mg silicates consisting of serpentines, chlorite, sepiolite and garnierite (Mg-hydroxides)
- · Ni in limonite zone occurs within Fe-oxides goethite and hematite
- saprolite and limonite zones tend to contain higher grades of Ni and can range from 1.5-3% and 1.2-1.7% respectively
- clay zone is rich in Ca, Na, Mg, Fe and Al forming clay minerals called smectites that contain trace amounts of Ni
- factors affecting and producing Ni-laterites include original rock the soil develops from, climate, rate of weathering, drainage of groundwater and tectonic setting

### Location of Ni laterite deposits

- Majority of Ni laterite deposits tend to occur within parallels
   23.5° north and south of the equator
- these are areas that are within warm, tropical environments
   where chemical and mechanical weathering occurs
- the majority of Ni laterite deposits are located in New Caledonia,
   Western Australia, Indonesia and South America
- New Caledonia contains 21% of world's laterites, Australia 29%,
   Philipinnes 17% and Indonesia 12%
- some deposits occur outside of tropical belt including Oregon,
   and the Ural Mountains, Russia

### Global Ni laterite deposits



The most notable Ni laterite deposits in Australia are the Murrin Murrin and Wingellina areas in WA and Greenvale in Qld

#### Bauxite

- · Most of the world's Al is mined from lateritic bauxite deposits
- bauxite is composed mainly of hydrated alumina minerals
   (e.g. gibbsite) in newer tropical deposits
- in older subtropical, temperature deposits, the main minerals are boehmite  $[Al(OH)_3]$  and some diaspore
- weathering of Si-rich rocks sees mobile elements such as Ca, Na,
   K and Mg leached while immobile elements Al, Fe, Ti and Zr remain
- after millions of years what is left is a laterite that is either
   Fe-rich or Al-rich

## Lateritic bauxite profile

- The profile consists of a relatively thin layer of soil overlying a horizon of cemented pisolitic bauxite (alcrete)
- underlying cemented bauxite is a layer of loose pisolitic bauxite 1-2m thick (main pisolite mineral  $\rightarrow$  gibbsite)
- below pisolitic bauxite is a nodular ironstone layer → Fe, kaolin rich
- beneath the ironstone layer the profile becomes progressively less nodular and more mottled
- mottled zone has reddish patches containing hematite and goethite
- at greater depths kaolinite dominates, the name pallid zone is given to the lowest part of profile

# Bauxite profile (Tilley 2008)



### Regolith profile- Weipa

- Weipa plateau experiences monsoonal climate → weathering to depth of ~30m
- organic-rich topsoil ~0.5m thick overlies red soil horizon up to 5m thick
- red soil consists of fine bauxite
   transported and redeposited
- bauxite horizon → mostly loose pisoliths, minor cemented bauxite
- forms thin laterite gravel  $\rightarrow$  0.5-12m thick  $\rightarrow$  continuous over many km



#### Pisolitic bauxite

- Pisolitic bauxite is composed of spherical concretionary grains with kaolinic cores and aluminium hydroxide cortices
- pisolith core is typically reworked parts of other bauxite material
- all pisoliths are concentrically layered with 2 to >10 cortices; most commonly 3-6
- · their external appearance bears no relationship to inner fabric
- pisoliths grow after release from clay matrix by addition of successive layers (cortices) of fine-grained gibbsite, boehmite and hematite

# Pisolitic bauxite

